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TECHNICAL NOTE D-38 

EFFECT OF CHORDWISE HEAT CONDUCTION ON THE TORSIONAL 

STIFFNESS OF A DIAMOND-WED WING SUBJECTED 

TO A CONSTANT HEAT INPUT 

By Robert G. Thomson and J. Lye11 Sanders, Jr. 

SUMMARY 

The effect of thermal stresses in reducing the torsional stiffness 
of a diamond-shaped wing subjected to a suddenly applied constant heat 
i q u t  is investigated, chordwise heat conduction being taken into 
azcow?t. Analytic solutions are obtainec! by ming separa t ion  of vsria- 
bles and Mellin transforms and computed results are given in graphical 
fami. The effect of chordwise heat zor,c?nctinn in reducing the tempera- 
ture gradients is greatest, as would be expected, near the leading and 
trailing edges of the wing. The dependence of torsional stiffness 
reduction on the heating rate and the final wing temperature is inferred 
from the results obtained. 

INTRODUCTION 

The influence of chordwise heat conduction has previously been 
neglected in calculating the effects of aerodynamic heating on the tor- 
sional stiffness of thin, solid, diamond-shaped wings. (See, for example, 
ref. 1.) 
where heat is applied abruptly the temperature at the leading and trailing 
edges of the wing instantaneously becomes the final equilibrium tempera- 
ture and produces a more severe temperature gradient than would actually 
occur in the structure. The resulting torsional stiffness reduction 
calculated from this temperature gradient will be of greater magnitude 
than is actually present. 

Because of the neglect of chordwise heat flow, under conditions 

Related problems in which chordwise heat conduction was considered 
have been investigated in references 2 and 3. In reference 2 the effect 
of chordwise heat conduction on the leading-edge temperature of a flat 
plate subjected to aerodynamic heating is presented. An analysis of the 
temperature distribution in a diamond-shaped wing subjected to a constant 
heat input witn heat f'lou peLmi+,ted along the chord and through the 
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thickness of the wing is given in reference 3. 
tigations, however, consider the effects of chordwise heat conduction 
on torsional stiffness. 

Neither of these inves- 

In the present paper the influence of chordwise heat conduction on 
the torsional stiffness of a diamond-shaped wing subjected to a constant, 
uniform, heat input is investigated. 
from that occurring in an actual structure undergoing aerodynamic heating, 
such a heat input would be realized from suddenly applied radiant heating, 
as by heating lamps in the laboratory, or from a nuclear explosion. 
particular, the assumption of a constant heat input permits an exact ana- 
lytical solution of this problem. 
purposes: First, the influence of chordwise heat conduction on torsional 
stiffness can be quantitatively shown. Second, the exact solution can 
serve as a basis for the evaluation of approximate procedures that must 
be applied to obtain the influence of chordwise heat conduction when a 
structure undergoes aerodynamic heating. 

Although this heat input is far 

In 

This exact solution can serve two 

SYMBOLS 

a arbitrary constant 

A cross-sectional area, arbitrary constant 

b = 2%/c 

C chord length 

Cn arbitrary constants (n = 1, 2, 3 ,  . . .) 
specific heat of wing material cP 

Dn constant defined after eq. (6) 

E Young's modulus 

f(s) Mellin transform 

G shear modulus 

J torsional stiffness constant 

Jn Bessel function of the first kind of order n 

K thermal conductivity of wing material 

L 
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P rate of heat input per unit area of surface (constant 
and uniform) 

Jn Struve function of order n 

t wing thickness (bx) 

t m maximum wing thickness 

u temperature 

Kb U nondimensional temperature parameter, - qc 

U1 nondimensional transient temperature parameter 

nondimensional quasi-steady-state temperature parameter uqs 

U v = -  
i5 

X distance along chord ~ e a s u r e d  from leading edge 

2x x1 = - 
C 

Yn Bessel function of second kind (Weber function) of order 

characteristic roots of J1 Zn 

n 

zn ( > = O  

U 

P 

7 time 

l i n e a r  coefficient of thermal expansion 

weight density of wing material 

nondimensional time parameter, - 877 
C2 T1 

torsional stiffness reduction parameter (see eq. (13)) qJr (‘1) 

X1 6 = -- 
J71 

(T spanwise stress 
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K thermal d i f fus iv i ty ,  - 
PCP 

11 

r gamma function 

Subscripts : 

eff e f f ec t ive  

e l  elementary 

0 i n i t i a l  

n,m integers  

Superscript: 

j integer  

Primes denote d i f f e ren t i a t ion  with respect  t o  x1 and dots  denote 
d i f fe ren t ia t ion  with respect t o  71. 

EFFECTS OF CHORDWISE HEXT CONDUCTION 

Temperature Distr ibut ion 

The analysis  of the  chordwise temperature d i s t r ibu t ion  i n  a diamond- 
shaped wing subjected t o  a constant heat  input is  presented i n  appendix A .  
I n  t h i s  analysis  the  spanwise heat  conduction was neglected, the  tempera- 
t u r e  through the thickness of the  wing was assumed t o  be constant, and 
a l l  material propert ies  were considered t o  be invariant  with temperature. 

From a consideration of the  heat balance i n  an element of the  wing 
(as shown i n  f i g .  1) the  following p a r t i a l  d i f f e r e n t i a l  equation was 
obtained after terms of higher order were neglected 

7 

Equation (1) can be wri t ten i n  nondimensional form as follows: 
I 
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where 

Kb- u = - u  
qc 

L 

0 

2x x1 = - 
C 

The primes denote differentiation with respect to 
denote differentiation with respect to 

x1 and the dots 

T ~ .  

Because of the symmetry of the cross section only half of the chord 
length was considered. Thus the appropriate boundary conditions were 
taken to be 

u'(l,Tl) = 0 

with the initial condition taken as 

U(Xp0) = 0 

(4) 

( 5 )  

In order to facilitate numerical calculations it was found advisable 
to make two solutions of the partial differential equation given in equa- 
tion (2); one solution appropriate for large values of 
for small values of T ~ .  

and B. 

T ~ ,  and another 
These solutions are discussed in appendixes A 

Long-time solution.- In appendix A the temperature distribution in 
the wing was found by considering the temperature to be the sum of two 
parts: 
distribution is stabilized, and a transient temperature distribution 
which is a function of both time and position. 
distribution as derived in appendix A is 

a quasi-steady-state solution in which the chordwise temperature 

The final temperature 
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2 Z- 
-11 - - T T  5 DnJo( Znxl) e 2 *  

2 
xi f T1 f --i x1 l J = - -  

2 12 n = l L m  ... 

wnere 

and Zn i s  the  value t h a t  satisfies the  equation 

L 
3 
4 
0 

The evaluation of dxl i s  described i n  appendix C .  

The chordwise temperature d i s t r ibu t ion  given by equation (6) i s  
ident ica l  t o  the  expression f o r  an average (through the  thickness) chord- 
w i s e  temperature d i s t r ibu t ion  found i n  reference 3 where the  heat  con- 
duction through the  thickness and along the  chord was considered. 
Furthermore, as can be seen from f igures  7 and 8 of reference 3 only a 
s l i g h t  temperature gradient through the thickness of t h e  wing was present.  1. 

Theoretically, equation (6) gives the  temperature a t  any s t a t i o n  of 
t he  cross sect ion a t  any time. However, for both 71 and XI small 
(a short  t i m e  after the appl icat ion of heat  with a t t en t ion  confined t o  
the  v ic in i ty  of the  leading or t r a i l i n g  edge), a prohibi t ive number of 
terms of the  series i n  equation (6)  i s  required t o  obtain reasonable 
accuracy. 
herein as t he  "long-time" solut ion.  
( T ~  > 1) the s e r i e s  i n  equation (6)  becomes negl igible  and continued 
heating only  causes a uniform increase i n  temperature as a l i n e a r  func- 
t i o n  of t i m e .  This i s  referred t o  as the. quasi-stegdy-state condition. 

- 

On account of t h i s  l imi ta t ion ,  equation (6) i s  re fer red  t o  
Note t h a t  f o r  very long times 

Since equation (6) could not be p rac t i ca l ly  used for small 
xl, a separate "short-time" solut ion was obtained by a d i f f e ren t  

T~ 
and 
approach. This approach i s  b r i e f l y  described below. 

Short-time solution.-  For shor t  t i m e s  ( T ~  < 0.01) the  important 

happenings a r e  confined t o  the leading and t r a i l i n g  edges of the wing. 
Therefore, a solut ion f o r  t he  temperature d i s t r ibu t ion  of an i n f i n i t e  
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wedge with apex at was used in appendix A to approximate the 
short-time temperature distribution in the diamond-shaped wing. 
differential equation and boundary conditions were identical to those 
stated in equations (2) to (3)  with the exception of the boundary con- 
dition at the midchord (eq. (4)), which is replaced by U ( xl,T1 ) + o  

x1 = 0 
The 

as 

The character of the "short-time" problem suggested the use of 
Mellin transforms for its analysis and yielded either an asymptotic or 
a convergent power series solution. 
given in appendix A .  

The details of the analysis are 

I A s  shown in appendix A, the short-time temperature distribution 
for the vicinity of the leading edge and for short-time intervals can 
best be represented by the convergent power series given as 

For short time intervals excluding the vicinity of the leading edge the 
asymptotic power series is the more appropriate and is given as 

Elementary solution.- In order to provide a basis for assessing 
the effect of chordwise heat conduction on the average chordwise tempera- 
ture distribution, the solution for zero chordwise heat conduction is 
required. For this case, the thermal conductivity K of the wing 
material is taken to be zero in equation (1); the following simple rela- 
tion results: 

(10) 
- 2q - - -  

a7 PCpbX 

By integrating this expression between the initial and final conditions 
and applying the initial condition U(xl,O) = 0, equation (10) becomes 
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T1 uel = - 
2x1 

This approximate (or elementary) temperature distribution does not 
satisfy the additional boundary conditions stated in equations ( 3 )  
and (4). When x approaches zero, the temperature approaches infinity. 
At x = c/2, the temperature gradient is not zero and a point of discon- 
tinuity exists. 
fore reduced the temperature of the leading (and trailing) edge to a 
finite value and diminished the temperature gradient at the midchord to 
zero. 

The inclusion of chordwise heat conduction has there- 

Results of Temperature Distribution Analysis 

In order to show the effect of chordwise heat conduction on the 
chordwise temperature distribution, the solutions f o r  the temperature 
distribution with and without chordwise heat flow were plotted across 
the half-chord in figures 2 and 3. * 

In figure 2 the ratio of U to Uel is plotted across the half- - 

equation (8) was used to calculate the temperatures for 
chord for various values of 
( 0  < x1 < 0.1 
0 < T ~ <  0.01. 
of xl and T~ was calculated by using equation (6). Note that in 

T ~ .  In the vicinity of the leading edge 

The temperature distribution for the remaining ranges 
) 

the limit as T ~ + O J  in equation ( 6 ) ,  - +2x1. 
Ue1 

In figure 3, U and U,1 are plotted across 
various values of T ~ .  The influence of chordwise 

the half-chord for 
heat conduction can 

L 
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4 
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be seen to have the greatest effect, as would be expected, near the 
leading edge of the wing. 
reduction, the temperatures in the vicinity of the leading edge are 
most important. 

In the calculation of torsional stiffness 
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Torsional Stiffness Reduction 

The presence of chordwise thermal gradients in a cross section induces 
thermal stresses which in turn cause a reduction in the torsional stiff- 
ness of the wing as shown in reference 1. 
torsional stiffness of a thin wing subjected to spanwise normal stresses 
was derived and is 

In reference 1 the effective 

where 

( M I 0  initial torsional stiffness 

d spanwise normal stress (tension positive) 

For t he  diamond-shaped prafile (ref. l), ( G J ) o  = 1 3  Gct,. 
*L 

For the constant heat input and double symmetry of the wing con- 
sidered in this paper, the induced tnermal stresses will prsduce on ly  a 
net average translation of the cross section. 
spanwise strain is therefore a constant and, by application of the equi- 
librium condition of zero thrust, the spanwise stress can be expressed 
through 

(See ref. 4.) The average 

The chordwise temperature distribution was derived for long- 
and short-time conditions; thus, the evaluation of the reduction in tor- 
sional stiffness must necessarily be separated in the same way. 
following sections deal with the evaluation of torsional stiffness reduc- 
tions due to these temperature distributions derived for long- and short- 
time intervals and for the elementary solution in which heat conduction 
was neglected. 

The 

Long-time solution.- Substitution of equation (6) into equation (14) 
Gc tz 
12 for spanwise stress and taking 

and simpiification the  expession 

(GJ)o = - yields after integration 
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where the torsional stiffness reduction parameter p$pl] is expressed 

Only the inclusion of the first four terms of the series in equa- 
tion (16) is necessary to give the effective torsional stiffness within 
1 percent for -r1> 0.01; for -r1> 0.08 only the first term is neces- 
sary. 
the reduction in torsional stiffness f o r  

The series of Bessel functions was therefore used to calculate 
T ~ >  0.01. 

Short-time solution.- For short times (71 < 0.01) the expressions 
U given by equations (8) and ( 9 )  may be substituted into equa- for 

tion (14) for spanwise stress. 
ever, the temperature distribution was rewritten in the form given by 
equation (Al?) as 

In order to evaluate the integrals, how- 

(17) - = 

qc fi v r e -  

a -  
1 -3 - $2 s, XPk) % 

Substitution of equation (17) for 
stress yields 

e into equation (14) for spanwise 

The torsional stiffness reduction parameter (see eq. (15) ) therefore 
be come s 
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The details for the evaluation of the integrals in equation (19) 
are given in appendix B. 
into equation (19) and simplification yields the final expression for 
the torsional stiffness reduction parameter as 

Substitution of these values for the integrals 

where 7 = 0.5772137 . . . Euler's constant. 
Elementary solution.- In order to obtain, for the sake of comparison, 

torsional stiffness reduction without chordwise heat flow the expression 
f 'nr  
spanwise stress. Thus 

given by equation (11) is substituted into equation (14) for 

Substitution of equation (21) into equation (13) for effective torsional 
stiffness yields, after integration and simplification, the following 
expression for the torsional stiffness reduction parameter 

c 
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Results of Torsional S t i f fness  Analysis 

I n  order t o  determine the e f f e c t  of chordwise heat  conduction on 
the  tors iona l  s t i f fnes s  reduction, t he  function Jr(7, )  was evaluated 
f o r  various values of 
heat  conduction. 
i s  plotted as a function of T ~ .  When -rl approaches i n f i n i t y ,  
without chordwise heat  conduction approaches i n f i n i t y  but  the  solut ion 
with chordwise heat conduction approaches asymptotically the  value 

\ - 1  

T~ 
f o r  the  solut ions with and without chordwise 

The r e s u l t s  a r e  presented i n  f igure  4 where q ( ~ ~ )  
Y'1) 

7 = 0.0292. 
240 

(See eq. (16).) Thus the  to r s iona l  s t i f f n e s s  reduction 

with chordwise heat conduction l eve l s  off after a f i n i t e  reduction. 

L 
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4 
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For the solut ion involving chordwise heat  conduction the  short-  
t i m e  solution was used f o r  
t i o n  (20) was found t o  be negl igible .  
so lu t ion  given by equation (16) was used and required only two t o  three 
terms i n  the s e r i e s  t o  obtain accuracy within l p e r c e n t .  A s  

increases,  the  number of necessary terms i n  the  series of equation (16) 
decreases u n t i l  f o r  only the  f i r s t  term was needed f o r  accu- 

racy within 1 percent. 

71 < 0.01 and the  series p a r t  of equa- 
For 71 > 0 . 0 1 t h e  long-time 

'rl 

71 > 0.08 

A more useful  and convenient presentat ion of t he  r e su l t s  of f i g -  
ure  4 might be effected i f  the  influence of chordwise heat  conduction 
on the  reduction i n  to r s iona l  s t i f f n e s s  i s  r e l a t ed  t o  the  magnitude of 
q/K the  r e t i o  of heating rate t o  conductivity which will yie ld  a 
desired temperature l e v e l  a t  some point  on the  cross  sect ion,  say, the  
center  XI = 1, instead of being r e l a t ed  t o  the  t i m e  parameter 71. 
This re la t ionship can be achieved through the  elementary temperature 
r e l a t i o n  (eq. (12))  from which it i s  seen tha t ,  f o r  x = c/2, 

Accordingly, the results of figure (4) have been rep lo t ted  i n  figure ( 5 )  

The ordinate i s  the  r a t i o  of t he  loss  of t o r s iona l  s t i f fnes s  
A.(GJ)e= 
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calculated with chordwise heat conduction to that calculated without 
accounting for the influence of chordwise heat conduction. From this 
figure it is seen that for values of 

torsional stiffness reductions due to a constant uniform heat input 
which are calculated without accounting for the benefits of chordwise 
heat conduction, will be appreciably in error. 

q, 

The smaller the magnitude 

, the greater is the effect of chordwise heat c2 ¶/K of the ratio - 

conduction on torsional stiffness reductions from this type of heat 
input. One might infer from this some general principles regarding the 
reliability of calculations of torsional stiffness which do not account 
fzr chcrdwise heat conduction. 
zertair! temperature at a point of a given thin wing structure is iresire&, 
the magnitude of the heating rate used to reach this temperature must be 

the elementary theory, are to be considered reliable. Conversely, for a 
given fixed heating rate applied to a given structure, calculations of 
torsional stiffness which neglect chordwise heat conduction can be rel'ied 
upon only if the temperatures to be achieved in the structure are low. 

For example, if in the laboratory a 

F .IL& - - if calculations of the reatiltlng tzrsicnal st.iffness, based on 

CONCLUDING REMARKS 

Analyses have been made of the effects of chordwise heat conduction 
on the torsional stiffness reduction of a thin diamond-shaped wing. 
Analytic solutions for both long- and short-time intervals were obtained 
by using separation of variables and Mellin transforms. The inclusion 
of chordwise heat conduction in the temperature distribution analysis 
produces the greatest effect, as would be expected, in reducing the tem- 
perature gradients near the leading and trailing edges of the wing. For 
a given structure this difference in calculated temperatures near the 
leading edge is also shown to increase with increasing time. For small 
time intervals the effect of chordwise heat conduction is small over 
most of the cross sectip. For large time intervals the effect of chord- 
wise heat conduction must be taken into account over the whole cross 
section to obtain satisfactory accuracy. 

The inclusion of chordwise heat conduction leads to a finite cal- 
culated stiffness reduction whereas the stiffness reduction, calculated 
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w i t h  chordwise heat flow neglected, increases without l i m i t .  The e f f e c t  
of chordwise heat  Conduction on t h e  reduction of torsicnal stiffmss f o r  
a diamond-shaped wing subjected t o  a constant heat input i s  found t o  vary 
inversely as t h e  magnitude of the  heating rate and d i r e c t l y  as the  con- 
duct ivi ty  of t h e  wing material and the  f i n a l  w i n g  t . e ~ p r z % x x z .  
given diamond-shaped wing i s  heated a t  a low heating rate o r  t o  a high 
f i n a l  wing temperature, the  e f fec t  of chordwise heat  conduction on the  
calculated to r s iona l  s t i f f n e s s  reductions must be considered. 

If a. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field,  Va. ,  May 8, 1959. 



APPENDIX A 

DERIVATIONS OF CHORDWISE TEMPERATURE DISTRIBUTION 

INCLUDING CHORDWISE HEAT FLOW 

Bessel Series Solution 

As a first step in determining the complete solution to equation (2) 
for U, consider the quasi-steady-state solution in which transient con- 
ditions are neglected. After a long period of time the temperature dis- 
tribution will stabilize and continued heating of the wedge will only 
cause a uniform increase in temperature as a linear function of time. 

Therefore let 

uqs = ' P l ( X 1 )  + 

vhere "1 is a constant and cp l(xl) i s  some function of xl. 

Substitution of the expression for Uqs from equation (Al) into 
equation (2) and integrating with respect to 
conditions given by equations (3) and (4) yields 

xl, using the boundary 

9 

x1 + + c2 
- "1' 

uqs - 2 - 

The constant 
double wedge to the heat input over the time 
form this condition is 

c2 can be evaluated by equating the total heat in the 
T. In nondimensional 

Thus 
F 
/ c2 = - 
12 

Therefore the quasi-steady-state solution is 

X + T 1 + -  5 
12 1 uqs = - - 

2 

( A 3  

(A4 1 
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The complete temperature distribution analysis including the tran- 
sient temperatiire cnnditims can be m l t t e n  as 

where U1(xl,'rl) represents the transient temperature conditions. By 
substitution of equation (A5) into equation (2) the heat balance equa- 
t Ion becomes 

2X1(iTqs + cl) = 1 + (X1U&)' + ( x p )  f 

Substitution of equation (A4) for Uqs into equation (A6) yields 

The boundary conditions on U1 
tions (3) and (4). 

are the same as those given by equa- 
However, the initial condition given by equation (5) 

12 

2 
becomes: Ul(x1,O) = -k - x1 + . By making use of the method of 

separation of variables, the solution to equation (A7) can be expressed 
as 

- 

where h is a positive undetermined constant. Application of the first 
boundary condition given by equation (3) yields 

c3 = 0 

Application of the second boundary condition given by equation (4) leads 
to the condition 

J1(@ = 0 

which defines values of A corresponding to the existence of nontrivial .. 
solutions of equation (A7). 
tion ( A 7 )  must have the form 

Therefore, the general solution of equa- 

- 
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m 

. 

where Zn = is the nth root of equation ( A g ) .  By using the initial 

condition, Ul(xl,O) = - (52 - - x1 + 6)  and the orthogonality relations 
for the Bessel function, 

2 
Dn can be expressed in the form 

Further simplification of the integral in equation (All), by integration 
by parts, yields 

and 

Thus U1 becomes 

and the complete expression for 
written as 

U as given by equation (A3) can be 

with Dn defined by equation (A12). 
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Short-Time Solution 

In order to arrive at a short-time solution to equation (2) the 
temperature distribution of an infinite wedge with apex at 
used to approximate the temperature distribution in the diamond-shand 
ving. 
of the form: 

x1 = 0 was 

%c C h Z i - u C L e r  ui tne problem suggested looking for a solution 

Substitution of equation ( A l 5 )  into equation (2) yields 

(A15  1 
L 
3 
4 
0 

In order to eliminate 

n = 1/2 and 'p2(~1) = ~ ~ l - 1 ~ ;  the result is the ordinary differential 
equation 

T~ from the coefficients of equation ( ~ 1 6 )  let 

- 
The boundary conditions are 

Note that the initial condition on U is automatically satisfied. 

Since V ( 5 )  is analytic in the interval 0 < 5 < w and satisfies 
conditions ( A 1 8 )  and ( A l g )  , it has a Mellin transform 
ref. 7.) Then 

f ( s )  . (See 



where a is a real constant yet to be determined. Substitution of this 
expression for V(g) into equation (A17)  yields 

or 

a+iw at2+iw - (6 - 3)f(s - 2) gs-lds = -1 

(A= 1 
55 SatB-i.. 

s2f ( s )  6"lds + 1 
ai Ja-iw 

Equation (A22) can be written as 

where E is the path shown in the following sketch. 

S plane 
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k t  

s2f(s) + (s - 3)f(s - 2) = 0 

Equation ( A 2 3 )  then becomes 

& s2f(s)p-ks = 1 

The general solution to the difference equation ( A 2 4 )  i s  

0 

L 
3 
4 

where P(s) = P ( s  + 2) i s  an arbitrary function of period two. (See 
ref. 6, ch. XII.) P(s) and the real number .a remain to be determined. 

Equation ( A 2 5 )  will be satisfied if the path e encloses the point 
s = 1, s2f (s )  has a simple pole of residue 1 at s = 1 but is 
otherwise regular inside 
verge. The condition of V(E) at infinity (eq. (A19))  w i l l  be satisfied 
if a < 0 in equation ( A 2 0 ) ) .  The condition on V(t) at zero 
(eq. ( A l 8 ) )  will be satisfied if a > 0 or if -1 < a < 0 and if 
f (s )  
-1< a = O+. 
tion (AX>) must, of course, converge. 
met by the following choice for a and P( s)  . 

E, and if all the integrals in question con- 

has at worst a simple pole at s = 0 and is otherwise regular for 
< In addition to these requirements the integral in equa- 

A l l  of these conditions will be 

x P(s) = - 
4E 

Thus finally 
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It can be shown rigorously t h a t  V ( 5 )  may be expanded i n  an  asymp- 
5 by the  term-by-term evaluation of t o t i c  s e r i e s  of negative powers of 

t he  s e r i e s  of res idues a t  the poles t o  the  l e f t  of the  path of integra-  
t i o n  of the  integrand of equation (A29). Thus 

where Rm( 5 )  i s  the  residue of t he  integrand a t  s = - ( 2 m  + 1). By 

making use of t he  recurrence re la t ions  f o r  t he  gamma function, 

may be expressed as 

and 

Hence f o r  s = -(a + 1) 

I-( s + a + 3 ) 2 m + l  2 (A33 1 
I - ( 3  = (s + 1)(s  + 3) . . . (s  + 2m - l ) ( s  + 2m + 1) 

The sum of the  residues of equation (A30)  can therefore  be wr i t ten  as 

c 
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Let 
becomes 

s = -(a f 1) i n  eqmtioii (A34); tinus, <ne sum of the  residues 

(A35 ) 

I 
”! 3 

results i n  4 
C 

r n h  
Since I‘(’ ”) = m!E(-l) f u r the r  s impl i f ica t ion  of equation (A35) 

Thus the short-time temperature d i s t r ibu t ion  can be wr i t ten  as 

The series solut ion given i n  equation (A37) f o r  t he  short-time t e m -  
perature d i s t r ibu t ion  w i l l  rapidly approach i t s  asymptote i f  

bu t  becomes impractical  as xl+O. 
d is t r ibu t ion  i n  the v i c i n i t y  of the  leading edge, 
t i m e  intervals  V( E,) needs t o  be expanded i n  pos i t ive  powers of E,. 
I n  order t o  evaluate V(E,) as a convergent power series i n  pos i t ive  
powers of 
g ra t ion  in  the  clockwise d i rec t ion ,  and 

1 

xl> \r“z 
I n  order t o  ca lcu la te  the  temperature 

x l <  0.1, f o r  shor t  

E,, a closed path i s  chosen t o  the  r i g h t  of t he  path of in te -  

>z. %(E, )  
1 J;“”” - d 

- --im 4fZ m=0,112,. . . V(E.1 = 

4 
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L 
3 
4 
0 

where R,(E) s = 0, 1, 2, 4, 6, 
8, 10 . . . . By making use of the recurrence relation given by 
equation-(A31) for the gamma function, the series of residues of equa- 
tion (~38) after some simplification become 

are the residues of the integrand at 

and 

A s  a further check on the validity n f  the resulting series solutions 
given by equations ( ~ 3 6 )  and (A39), the solutions were substituted back 
into the ordinary differential equation ( A l 7 )  and satisfied it exactly. 
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APPENDIX B 
. 

EVALUATION OF TBE INTEGRALS I N  THE SHORT-TIME! SOLUTION 

L 
3 
4 

Since the real part of the exponent of 6 is always positive under 
the integral sign, the contribution of the lower limit (zero) is null. 
Theref ore,  

j+ l  - 
T 2  
1 
25ti 

ds 

For the short-time solution - >> 1 it is appropriate for 
Fl 

computational purposes to expand the integrals in equation (B2) in an 
asymptotic series of negative powers of - I .  Thus 

IE 

is the residue of the integrand 

making use of the recurrence relations for the 

at s = - ( 2 m  + 1). By 

gamma functions as was 
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L 
3 
4 
0 

done i n  appendix A, the  evaluation of the  s e r i e s  of residues after some 
s implif icat ion can be wri t ten as 

Similarly,  the  asymptotic se r ies  f o r  L1 x12V[k)dxl i s  the  

series of residues a t  
a double pole a t  s = -3 as can be seen from 

s = - ( 2 m  + 1). However, the  integrand possesses 

and equations ( A 3 l )  and (A33). 
recurrence r e l a t ions  f o r  the gamma function, t he  series of residues of 
equation (B5) after some simplification can be wr i t ten  as 

By making iise of residue theory sr?d the 

where 7 ='0.3772157 . . . Euler 's  constant. 

asymptotic series f o r  ~ ' x ? V k d x ~  can 

of res idues a t  s = -(a + 1). The integrand 
a t  s = -(a + 1) as can be seen from 

The evaluation of t he  

a l s o  be found as the  series 

possesses a l l  simple poles 
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The solution f o r  the series of residues is similar to the solutions 
previously arrived at and the resulting expression is 

L 
3 
4 
0 
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APPENDIX C 

Subst i tut ion i n  a known iden t i ty  (see ref. 7) f o r  

r e s u l t s  i n  

where &,(Zn) 
equation (C1) reduces t o  

i s  t h e  Struve function of order n. Since Jl(Zn) = 0, 

Theref ore  equation ( C 2 )  becomes 
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A h s m  i den t i ty  iiivolidiig tine "aessei functions of the first  and second 
kind (ref. 8) is 

and since Jl(%) = 0, equation ( C 4 )  becomes 

T 

The asymptotic approximation f o r  Jo(Zn) is 
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Figure 1.- Diamond-shaped wing under a constant heat input. 
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Figure 2.- Ratio of temperature calculated with and without chordwise 
hea t  conduction p lo t ted  across the half-chord f o r  various values of 
the  time parameter T~ = - 81 T.  
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Figure 3.- Temperature distribution calculated with and without chord- 
wise heat conduction plotted across the half-chord for various values 

of the time parameter 71 = %t 7. 
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